Elasticity Numericals Class 11 Physics

Important formulae for solving numericals of elasticity :

(i)   Stress =  $\frac{Force}{area}$ 

(ii)   Strain = $\frac{Change\,\,in\,\,configuration}{Original\,\,configuration}$

(iii)   Longitudinal strain = $\frac{Change\,\,in\,\,length}{Original\,\,length}$

(iv)   Volumetric strain = $\frac{Change\,\,in\,\,volume}{Original\,\,volume}$

(v)   Modulus of elasticity (E) = $\frac{Stress}{Strain}$

(vi)   Young’s modulus of elasticity, Y = $\frac{Fl}{eA}$

(vii)   Elastic potential energy stored, E = $\frac{1}{2}$ .F .e

(viii)   Work done to stretch the wire = Energy stored

(ix)   Energy density, ${{\rho }_{E}}$ = $\frac{1}{2}$ stress × strain

(x)   Bulk Modulus, K = $\frac{Normal\,\,stress}{Volumetric\,\,strain}$

(xi)   Modulus of rigidity ($\eta $) = $\frac{Tangential\,\,stress}{Shear\,\,strain}$

(xii)   Poisson’s ratio ($\sigma $) = $\frac{Lateral\,\,strain}{Longitudinal\,\,strain}$

(xiii)   Shearing strength = $\frac{Force}{area}$

(xiv)   Density, $\rho $ = $\frac{mass}{volume}$ = $\frac{m}{A.l}$

1. What force is required to stretch a steel wire of cross sectional area 1 cm2 to double its length?

[YSteel = 2×1011 N/m ]

Solution:

Elasticity Numericals Class 11 Physics

Force, F = ?

Area of cross-section, A = 1 cm2 

A = (1×10-2)2 m2 = 1×10-4 m2

Let initial length, l1 = l

Then final length, l2 = 2l

Elongation, e = l2l1 = 2ll = l

$\therefore $ Elongation, e = l

YSteel = 2×1011 N/m2

We know,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$

Or, F = $\frac{YAe}{l}$

Or, F = $\frac{2\times {{10}^{11}}\times l\times 1\times {{10}^{-4}}}{l}$

$\therefore $ F = 2×107 N

2. Calculate the work done in stretching a steel wire 100 cm in length and of cross sectional area 0.030 cm2 when a load of 100 N is slowly applied before the elastic limit is reached.  [YSteel = 2×1011 N/m ]

Solution:

Elasticity Numericals Class 11 Physics

Here,

Work done, W = ? 

Length of wire, l = 100 cm = 1m

Cross-sectional area, A = 0.03 cm

                          A  = 0.03× (1×10–2)2 m2

                 A = 0.03×10–4 m2

Force, F = 100 N

YSteel = 2×1011 Nm–2 

We know,

Young’s modulus of elasticity

        Y = $\frac{Fl}{eA}$

Or,   e = $\frac{Fl}{YA}$

Or,   e = $\frac{100\times 1}{2\times {{10}^{11}}\times 0.03\times {{10}^{-4}}}$

Elongation, e = $\frac{1}{6000}$ m

Now, 

Work done (W) = Energy stored (E)

Or,   W = $\frac{1}{2}$ .F .e

Or,   W = $\frac{1}{2}$ × 100  × $\frac{1}{6000}$

$\therefore $    W = 8.33×10-3 J

3. Find the work done in stretching a wire of cross sectional area 10–2 cm2 and 2m long through 0.1 mm, If Y for the material of wire is 2×1011 Nm–2.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Work done, W = ?

Cross-sectional area, A = 10–2 cm

A  = 10–2 × (1×10–2)2 m2

A = 1×10–6 m2

Length of wire, l = 2 m

Elongation, e = 0.1 mm = 0.1×10–3 m

YSteel = 2×1011 Nm–2 

We know,

Young’s modulus of elasticity

    Y = $\frac{Fl}{eA}$

    F = $\frac{YeA}{l}$

    F = $\frac{2\times {{10}^{11}}\times 0.1\times {{10}^{-3}}\times 1\times {{10}^{-6}}}{2}$

    F = 10 N

Now, work done, (W) = Energy stored (E)

      W = $\frac{1}{2}$ .F .e

      W = $\frac{1}{2}$ × 10  × 0.1×10–3

$\therefore $  W = 5×10-4 J

4. A vertical brass rod of circular section is loaded by placing of 5 kg weight on top of it.   If its length is 50 cm and radius of cross section is 1 cm, find the contraction of the rod and the energy stored in it. 

[YBrass = 3.5×1010 Nm–2]

Solution:

Elasticity Numericals Class 11 Physics

Here,

Mass on top, m  = 5 kg

Length of rod, l = 50 cm = 0.5 m

Radius, r = 1 cm = 1×10–2 m 

(i)  Contraction, e (or  $\Delta l$ or l1l1) = ?

(ii)  Energy stored, E = ?

YBrass = 3.5×1010 Nm–2 

We know, 

Young’s modulus of elasticity

Y = $\frac{Fl}{eA}$

e = $\frac{Fl}{YA}$

e = $\frac{mgl}{Y\times \pi {{r}^{2}}}$

e = $\frac{5\times 10\times 0.5}{3.5\times {{10}^{10}}\times \pi {{(1\times {{10}^{-2}})}^{2}}}$

$\therefore $ Contraction, e = 2.27×10–6 m

Now,

 Energy stored, E = $\frac{1}{2}$ .F .e

E = $\frac{1}{2}$ × mg × e 

E = $\frac{1}{2}$ × 5 × 10 × 2.27×10–6

$\therefore $ E = 5.68×10-5 J

 5. Calculate the work done in stretching a steel wire 100 cm in length and of cross sectional area 0.03 cm2 when a load of 100 N is slowly applied without the elastic limit being reached.  [YSteel = 2×1011 N/m ]

Solution:

Elasticity Numericals Class 11 Physics

Work done, W = ?

Length of wire, l = 100 cm = 1m

Cross-sectional area, A = 0.03 cm

A  = 0.03× (1×10–2)2 m2

A = 0.03×10–4 m2

Force, F = 100 N

YSteel = 2×1011 Nm–2 

We know,

Young’s modulus of elasticity

   Y = $\frac{Fl}{eA}$

   e = $\frac{Fl}{YA}$

   e = $\frac{100\times 1}{2\times {{10}^{11}}\times 0.03\times {{10}^{-4}}}$

Elongation, e = $\frac{1}{6000}$ m

Now, work done (W) = Energy stored (E)

     W = $\frac{1}{2}$ .F .e

     W = $\frac{1}{2}$ × 100  × $\frac{1}{6000}$

$\therefore $ W = 8.33×10-3 J

6. A uniform steel wire of density 8000 Kgm–3 weight 20 g and is 2.5 m long. It lengthens by 1 mm when trenched by a force of 80 N. Calculate the value of the Young’s modulus of steel and the energy stored in the wire.

Solution: 

Elasticity Numericals Class 11 Physics

Here,

Density of steel wire, $\rho $ = 8000 kgm-3

Mass of wire, m = 20g = 20×10-3kg

Length of wire l = 2.5m

Elongation, e = 1mm = 1×10-3m

Force, F = 80 N 

Young’s modulus of steel, Y = ?

Energy stored in the wire, E = ?

We have,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$ …….(i)

Again, 

Density, $\rho $ = $\frac{mass}{volume}$ = $\frac{m}{A.l}$

A = $\frac{m}{\rho l}$ = $\frac{20\times {{10}^{-3}}}{8000\times 2.5}$ 

A = 1×10-6 m2

From equation (i),

Y = $\frac{Fl}{eA}$= $\frac{80\times 2.5}{1\times {{10}^{-3}}\times 1\times {{10}^{-6}}}$  

$\therefore $ Y = 2×1011 Nm–2

Now,

Energy stored in the stretched wire,

      E = $\frac{1}{2}$ .F .e

Or, E = $\frac{1}{2}$ × 80 × 1×10-3

$\therefore $ E = 40×10-3 J

7. A uniform Steel wire of density 7800 Kgm–3 weights 16 gm and is 250 cm long. It lengthens by 1.2 mm when is stretched by a force of 80 N. Calculate the Young’s modulus and energy stored in the wire.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Density of steel wire, $\rho $ = 7800 kgm-3

Mass of wire, m = 16 g = 16×10-3 kg

Length of wire l = 250 cm = 2.5 m

Elongation, e = 1.2 mm = 1.2×10-3 m

Force, F = 80 N

Young’s modulus of steel, Y = ?

Energy stored in the wire, E = ?

We have,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$ …….(i)

Again,

Density, $\rho $ = $\frac{mass}{volume}$ =  $\frac{m}{A.l}$

A = $\frac{m}{\rho l}$

From equation (i),

       Y = $\frac{Fl}{e}$× $\frac{\rho l}{m}$

Or,  Y = $\frac{80\times 2.5}{1.2\times {{10}^{-3}}}$×  $\frac{7800\times 2.5}{16\times {{10}^{-3}}}$

$\therefore $    Y = 2.03×1011 Nm–2

Now,

Energy stored in the stretched wire,

      E = $\frac{1}{2}$ .F .e

Or, E = $\frac{1}{2}$ × 80 × 1.2×10-3

$\therefore $ E = 4.8×10-2 J

8. A steel wire of density 8000 Kgm–3 weights 24 g and is 250 cm long. It lengthens by 1.2 mm when stretched by a force of 80 N. Calculate the Young’s modulus of Steel and the energy stored in the wire.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Density of steel wire, $\rho $ = 8000 kgm-3

Mass of wire, m = 24 g = 24×10-3kg

Length of wire l = 250 cm = 2.5m

Elongation, e = 1.2 mm = 1.2×10-3m

Force, F = 80 N

Young’s modulus of steel, Y = ?

Energy stored in the wire, E = ?

We have,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$ …….(i)

Again, 

Density, $\rho $ = $\frac{mass}{volume}$ = $\frac{m}{A.l}$ 

 A = $\frac{m}{\rho l}$ 

From equation (i),

   Y = $\frac{Fl}{e}$× $\frac{\rho l}{m}$

Or,  Y = $\frac{80\times 2.5}{1.2\times {{10}^{-3}}}$×  $\frac{8000\times 2.5}{24\times {{10}^{-3}}}$

$\therefore $    Y = 1.389×1011 Nm–2

Now,

Energy stored in the stretched wire,

      E = $\frac{1}{2}$ .F .e

Or, E = $\frac{1}{2}$ × 80 × 1.2×10-3

$\therefore $ E = 4.8×10-2 J

9. A uniform steel wire of density 7800 Kgm–3 weighs 16 gram and is 250 cm. It lengthens by 1.2 mm when a load of 8 kg is applied. Calculate the value of Young’s modulus for the steel and the energy stored in the wire.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Density of steel wire, $\rho $ = 7800 kgm-3

Mass of wire, m = 16 g = 16×10-3 kg

Length of wire l = 250 cm = 2.5 m

Elongation, e = 1.2 mm = 1.2×10-3 m

Hanging mass, M = 8 Kg

Young’s modulus of steel, Y = ?

Energy stored in the wire, E = ?

We have,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$

Y = $\frac{Mg\times l}{eA}$ …….(i)     [$\because $ F = Mg]

Again, 

Density, $\rho $ = $\frac{mass}{volume}$ = $\frac{m}{A.l}$

A = $\frac{m}{\rho l}$ 

From equation (i),

  Y = $\frac{Fl}{e}$× $\frac{\rho l}{m}$

Or,  Y = $\frac{8\times 10\times 2.5}{1.2\times {{10}^{-3}}}$×  $\frac{7800\times 2.5}{16\times {{10}^{-3}}}$

$\therefore $    Y = 2.03×1011 Nm–2

Now,

Energy stored in the stretched wire,

      E = $\frac{1}{2}$ .F .e

Or, E = $\frac{1}{2}$ × 80 × 1.2×10-3

$\therefore $ E = 4.8×10-2 J

10. A wire of length 2.5 m and area of cross section 1×10–6 m2 has a mass of 15 kg hanging on it. What is the extension produced? How much is the energy stored in the standard wire if Young’s modulus of wire is 2×1011 Nm–2.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Length of wire l = 2.5m

Area of cross-section, A = 1×10–6 m2

Hanging mass, m = 15 kg

Elongation, e = ?

Energy stored in the wire, E = ?

Young’s modulus of steel, Y = 2×1011 Nm–2.

We have,

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$ 

e = $\frac{Fl}{YA}$    [here, F = mg]

e = $\frac{15\times 10\times 2.5}{2\times {{10}^{11}}\times 1\times {{10}^{-6}}}$

e = 1.875 ×10-3 m

Again, 

Energy stored in the stretched wire,

      E = $\frac{1}{2}$ .F .e

Or, E = $\frac{1}{2}$ × mg × e 

Or, E = $\frac{1}{2}$ × 15×10 ×1.875 ×10-3

$\therefore $ E = 0.141 J

11. A steel cable with cross sectional area 3 cm2 has an elastic limit of 2.40×108 pa. Find the maximum upward acceleration that can be given a 1200 kg elevator supported by the cable if the stress does not exceed one third of the elastic limit.

Solution:

Elasticity Numericals Class 11 Physics

Here,

Cross-sectional area, A = 3 cm2 

Or,                            A = 3×(1×10–2)2 

Or,                            A = 3×10–4 m2

Elastic limit = 2.4×108 pa (i.e. Nm–2 )

Maximum upward acceleration, amax = ?

Mass of elevator, m = 1200 kg

Maximum stress = $\frac{1}{3}$ of elastic limit

Or,  $\frac{Force\,\,(ma{{x}^{m}})}{area}$ = $\frac{1}{3}$× elastic limit

Or,  $\frac{m\times {{a}_{max}}}{A}$ = $\frac{1}{3}$× elastic limit

Or,  amax = $\frac{1}{3}$× $\frac{A}{m}$× elastic limit

Or,  amax = $\frac{1}{3}$× $\frac{3\times {{10}^{-4}}}{1200}$×2.4×10

$\therefore $  amax = 20 ms-2

12. How much force is required to punch a hole 1 cm in diameter in a steel sheet 5mm thick whose shearing strength is 2.76×108 Nm–2.

Solution:

Here,

Force, F = ?

Diameter of hole, d = 1 cm

$\therefore $ Radius of hole, r = 0.5 cm 

r = 0.5 × 10–2 m

Thickness of steel sheet, t = 5 mm 

t = 5 × 10–3 m

Shearing strength = 2.76 ×108 Nm–2

We have,

    Shearing strength = $\frac{Force}{area}$

Or, Shearing strength = $\frac{F}{C\times t}$    here, C is circumference.

Or, F = Shearing strength × C × t

Or, F = Shearing strength × 2$\pi $r × t

Or, F = 2.76 ×108 × 2$\pi $× 0.5 × 10–2 × 5 × 10–3

$\therefore $ F = 43353.98 N

13. A copper wire and a steel wire of the same cross sectional area and of length 1 m and 2 m respectively are connected end to end. A force is applied, which stretches their combined length by 1 cm. Find how much each wire is elongated. [Ycopper = 1.2×1011 N/m2 and Ysteel = 2×1011 N/m2]

Solution:

Elasticity Numericals Class 11 Physics

Here,

Length of copper wire, lcu = 1 m 

Length of steel wire, lcu = 2 m Total elongation, ecu + es = 1 cm = 1×10–2 m……(i)

(i)  Elongation in copper wire, ecu = ?

(ii)  Elongation in steel wire, es = ?

For copper, Young’s modulus of elasticity,

Ycu = $\frac{F\,\,{{l}_{cu}}}{{{e}_{cu}}A}$

ecu = $\frac{F\,\,{{l}_{cu}}}{{{Y}_{cu\,\,}}A}$….(ii)

For steel, Young’s modulus of elasticity,

Ys = $\frac{F{{l}_{s}}}{{{e}_{s}}A}$

es = $\frac{F\,{{l}_{S}}}{{{Y}_{S}}A}$….(iii)

Dividing equation (ii) by (iii)

Or,  $\frac{{{e}_{cu}}}{{{e}_{s}}}$= $\frac{{{l}_{cu}}}{{{Y}_{cu}}}$×$\frac{{{Y}_{S}}}{{{l}_{S}}}$

Or,  $\frac{1\times {{10}^{-2}}-{{e}_{S}}}{{{e}_{S}}}$= $\frac{1}{1.2\times {{10}^{11}}}$× $\frac{2\times {{10}^{11}}}{2}$ 

Or,  $\frac{1\times {{10}^{-2}}-{{e}_{S}}}{{{e}_{S}}}$= $\frac{5}{6}$

Or,  6×1×10–2 – 6 es = 5 es

Or,  es = $\frac{6\times 1\times {{10}^{-2}}}{11}$

 ∴   Elongation in steel wire, e= 5.45×10–3 m.

 and elongation in copper wire, ecu  1×10–2 – 5.45×10–3 = 4.54 ×10–3 m

14. A rubber cord of a catapult has a cross-sectional area 1.0 mm2 and total un-stretched length 10 cm. It is stretched to 12 cm and then released to project a missile of mass 5.0 g. Calculate the velocity of projection. [Yrubber = 5×108 N/m2]

Solution:

Area of cross-section, A = 1 mm2 

A = (1×10-3)2 m2 = 1×10-6 m2

Un-stretched (original) length, l1 = 10 cm = 10 × 10-2 m

Stretched (final) length, l2 = 12 cm = 12 × 10-2 m

Elongation, e = l2l1 

e = 2cm

e = 2×10-2 m

Mass of missile, m = 5g 

m = 5×10-3 kg

Velocity projection, v = ?

Yrubber = 5×108 N/m2

We have, 

Young’s modulus of elasticity,

Y = $\frac{Fl}{eA}$

F = $\frac{YAe}{l}$

F = $\frac{5\times {{10}^{8}}\times 2\times {{10}^{-2}}\times 1\times {{10}^{-6}}}{10\times {{10}^{-2}}}$

F = 100 N

Then,

Elastic energy stored in a stretched rubber

E = $\frac{1}{2}$ .F .e

E = $\frac{1}{2}$ × 100 × 2 × 10-2

E = 1 J

According to work energy theorem,

Elastic potential energy, E = K.E 

Or, K.E = $\frac{1}{2}$ .m . v2

Or, 1 = $\frac{1}{2}$ × 5×10-3 v2

Or, v = $\sqrt{\frac{2}{5\times {{10}^{-3}}}}$

$\therefore $ v = 20 m/s

Share This Post

3 thoughts on “Elasticity Numericals Class 11 Physics”

  1. Avatar of Hildegarde Cyrnek
    Hildegarde Cyrnek

    I really love your site.. Pleasant colors & theme. Did you build this site yourself? Please reply back as I’m planning to create my own personal blog and would love to know where you got this from or exactly what the theme is named. Kudos!

Leave a Comment

Your email address will not be published. Required fields are marked *